
1trt.J. Hcur Mosr Tronrfer. Vol. 5. pp. 505-511. Pergamon Press 1962. Printed in Great Britain. 

BUOYANCY EFFECTS ON HORIZONTAL BOUNDARY-LAYER 

FLOW AND HEAT TRANSFER 

E. M. SPARROW and W, J. ~NKOWYCZ 

Heat Transfer Laboratory, Department of Mechanical Engineering, University of Minnesota, 
Minneapolis, Minnesota 

(Received 29 May 1961 and in revisedform 29 September 1961) 

Abstract-The conditions have been determined under which there are significant effects of 
buoyancy on a forced~onvection, boundary-layer fiow along a flat plate. It is found that low- 

Prandtl number fluids are more sensitive to buoyancy effects. 

INTRODUCTION 

BUOYANCY forces may exist in a boundary-layer 
flow over a horizontal surface if the surface 
temperature differs from that of the free stream. 
The effect of the buoyancy is to induce a longi- 
tudinal pressure gradient and, by this, the 
velocity and heat-transfer characteristics of the 
basic forced-convection flow may be modified. 
The conditions under which the buoyancy effects 
are significant are thus of practical interest, and 
it was to determine these conditions that this 
investigation was undertaken. 

When this study was begun, there was (within 
the knowledge of the authors) no prior work on 
the problem reported in the literature. However, 
while calculations were in progress, a reprint 
appeared [1] in which the buoyancy effects 
were analyzed and results reported for gas flows 
having a Prandtl number of 0.72. The present 
investigation was conceived with the somewhat 
broader scope of studying the buoyancy effects 
at various Prandtl numbers, particularly because 
it was expected that these effects would be larger 
for low Prandtl Auids. The purpose of this brief 
paper is to present results at various Prandtl 
numbers and, additionally, to illuminate certain 
aspects of the analysis and results with a some- 
what greater physical perspective. Tt may be 
noted at the outset that the effects of the buoy- 
ancy as found here are of opposite sigrz compared 
to those found in [l].* In other words, while 
we find that buoyancy increases the heat transfer 
______-_-___-.~~~ .__ 

* There appears to be a sign error in equation (21) of 
[II, wherein the term 8& ought to have a minus sign. 

and skin friction for flow above a flat plate 
whose surface is at a temperature higher than 
the free-stream flow, [l] finds an opposite effect. 
That the direction of the buoyancy effects is 
correctly represented here will be verified by 
physical arguments relating to the induced 
longitudinal pressure gradient. 

ANALYSIS 

Let us consider a horizontal flat plate over 
which flows a laminar boundary-layer flow with 
free-stream velocity U, and free-stream tem- 
perature r,. The plate temperature is T,. The 
co-ordinate x measures the distance along the 
plate from the leading edge, while y measures 
the distance normal to the surface (positive, 
vertically upward). 

In order to formulate a buoyancy force, it is 
necessary that density variations within the 
fluid be considered. In this analysis, we adopt 
the point of view (common in free-convection 
boundary-layer studies) of separating buoyancy 
effects from other variable property effects. In 
this spirit, density variations are considered 
only to the extent that they contribute to the 
buoyancy force. Aside from this, other variations 
in density, as well as variations in thermal con- 
ductivity and viscosity, are not included. 

considering flow above the plate, the static 
pressure at some location X, y within the 
boundary layer can be written as 

P(K Y) - p(h) = g S; P dy (1) 

where p(h) is the pressure at some position 
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.V = h well outside the boundary layer and is, 
therefore, independent of x. The longitudinal 
pressure gradient is then found by differentiation 

If the isotherms within the boundary layer were 
horizontal and the boundary-layer thickness 
uniform, then the integral would be independent 
of x, and +‘pi& would be zero. Thus, the pressure 
gradient is induced because the boundary layer 
grows thicker with x. Then, introducing a 
simplified equation of state 

P - P, = PPV, - v 

which has been widely adopted in buoyancy- 
affected flows (e.g. [2]), there follows 

where the upper limit has been taken as infinity 
without any loss of generality. For flow below 
the plate, the co-ordinate JJ would be reversed 
to measure distances vertically downward, and 
the minus sign in equation (,3) would be deleted. 

It is of some interest to consider the sign of 
the induced pressure gradient. Consider, as a 
concrete example, a flow above the plate for 
which T, > T,. Then, remembering that the 
boundary layer thickens with increasing x, it is 
easy to see that Jt p dy decreases with x and 
.C: (T-- T,) dy increases withx. Thus, from either 
of equations (2) or (3), it follows that the induced 
pressure gradient 2p/iix is negative. Thus, the flow 
in the boundary layer is accelerated, thereby 
increasing the heat transfer and skin friction. The 
same conclusion applies to a flow below the plate 
for which T, < T,. The opposite effect occurs for 
flow above the plate for T,, < T, and for flow 
below the plate for T,, > T,. 

The relationship between the induced pressure 
gradient and the buoyancy force was derived in 
a more formal way in [l] which made physical 
interpretation difficult. This is perhaps why 
buoyancy effects of opposite sign (apparently 
due to a later sign error) went undetected. 

With the pressure gradient given by equation 
(31, the mass, momentum and energy equations 
for boundary-layer flow above the plate become 

(6) 

where the symbols have their usual meaning. In 
these equations, fluid-property variations have 
been treated as previously discussed. In addition, 
the viscous-dissipation and compression-work 
terms have not been included in the energy 
equation. It can be shown that both viscous dis- 
sipation and compression work are proportional 
to the Eckert number, Ui/2c, (T,,. -- T,). 
Therefore, both of these energy terms will 
have a negligible effect on heat transfer if 
the Eckert number is sufficiently small;* 
and this is the condition for which the present 
analysis has been carried through. If viscous 
dissipation and compression work were to be 
considered along with the buoyancy effects, 
then the Eckert number would appear as an 
additional parameter which would have to be 
specified for each solution one might wish to 
obtain. 

Because of the nature of the coupling between 
equations (5) and (6), it is not possible to use 
the usual boundary-layer mathematics (similarity 
transformation) by which the partial-differential 
equations are reduced to ordinary differential 
equations. Therefore, a series solution may be 
sought for. Inasmuch as we are seeking a solution 
which gives the perturbation of a basic forced 
convection flow due to buoyancy, it is logical 
to construct a series whose leading term is that 
for purely forced flow and the later terms give 
the buoyancy effect. It is, therefore, convenient 
to define new independent variables as follows 
___~ __._~ ______-- 

* The quantitative criterion is that the product of the 
Eckert number and the recovery factor is negligibly small 
compared to unity. For gases and fluids of higher Prandtl 
number (recovery factor 2: PW), the Eckert number 
would have to be very much less than unity. For liquid 
metals [recovery factor 2: PrxP (0.924 + 0.194 Pr1/2)), [3], 
it would be necessary only that the Eckert number be 
moderately less than unity. The foregoing remarks con- 
tinue to apply when there are small buoyancy effects, as 
considered here. 



BUOYANCY EFFECTS ON HORIZONTAL BOUNDARY-LAYER FLOW 507 

Re, = U,x/v, Gr, = gfilT, - Tmlx3/v2 (7b) 

The 7 variable is seen to be the well-known 
forced-convection (Blasius) similarity variable; 
while I measures the strength of the free con- 
vection (Grashof number) relative to the forced 
convection (Reynolds number) and is propor- 
tional to xlla. The absolute magnitude signs in 
the Grashof number permit consideration of 
both TIC > Tm and T, < Tie. New dependent 
variables f and 8, respectively related to the 
velocity and temperature, are then introduced 

f(t, 7) = $J/.\/(xv&) =.A&) Lt: ffi(7) + . . . @a) 

e(f. 7) = (T - Tco)/(Ttc - Tco) 
= 4,(,) 4 ff4’3 + . . . @W 

where Ifr is the stream function which satisfies 
equation (4): u = &J/+, L’ = - at&%x. The 
functionsf, and 0, are associated with the pure 
forced flow. The plus-minus signs refer respec- 
tively to TW > Too and TW < T, for flow above 
the plate, and have opposite meaning for flow 
befow the plate. 

Ordinary differential equations for the f 
and 0 functions are found by substituting the 
series into the momentum and energy conserva- 
tion equations (4) and (5) and then grouping 
terms according to the powers of 5 which 
multiply them. Boundary conditions are derived 
by noting that u = v = 0 and T = T, at y = 0 
(plate surface) and that u + U, and T + T, as 
7] --f 3c (free stream). 

SOLUTIONS 

The ordinary differential equations, thus 
derived, were solved numerica~y by the Kutta- 
Runge integration technique on a Remington 

Rand 1103 electronic digital computer. The 
calculations were carried out for Prandtl 
numbers of 0.01, O-7 and 10. From these solu- 
tions we may obtain derivatives of the 0 and f 
functions at the plate surface (7 = 0) which are 
required in the heat-transfer and skin-friction 
calculations. These have been listed in Table 1. 
where the primes denote differentiation with 
respect to q. For Pr = 0.7, our results differ in 
magnitude by 2 or 3 in the third place from those 
obtained in [I]* for Pr = O-72. This difference 
may in part be due to the fact that the integra- 
tion step size of [l] appears to be 8 times that 
of the present investigation. There is a difference 
in sign which has already been noted. 

HEAT TRANSFER AND SKIN FRICTION 

The local heat transfer from the wall to the 
fluid may be calculated from Fourier’s Law: 
q = - ~(~~/~~)~ = 0’ When the dimensionless 
variabIes of equations (7) and (8) are introduced, 
the expression for q becomes 

4 Gr, UO) 
-=“j@qii+... 

40 
(9) 

where q,, represents the heat-transfer result for 
pure forced convection flow as given by 

q,x/k(T, - Tm) = Reip’ [- 8:(O)]. (9a) 

The departure of q/q0 from unity is a measure of 
the effect of buoyancy on the local heat transfer. 
For flow above the plate, q/q0 > 1 when 
T, > Tm; whileqlq, < 1 when T, < T,. Oppo- 
site effects are found for flow beneath the plate. 
The above relationships are of opposite sign to 
those stated in [l]. 
-_ __--- 

* The f,“(O) and B,‘(O) must be respectively scaled by 
factors off and 3 in order to make the comparison. 

Table 1. Table of derivatives at =.= 0 7 
-.__ __~_~____~~~____ .zzs 

Pr /I 

- 
0.0516 IS.28 0.303 46.02 5.872 5,958 

0.7 
IO.0 j ::::g ;:+g 

1.722 0.357 5.186 1.220 0.9791 
1, 0.3851 0.229 1.160 0.3145 0.3891 

L -z_____ --. - ._ m 
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The local skin friction is obtained by applying The greater strength of the buoyancy for 
the Newtonian shear formula: r = ~(&/LJJ), = ,,. low-Prandtl-number fluids is related to the 
After introducing the dimensionless variables thicker thermal boundary layers possessed by 
of equations (7) and (8), this becomes these fluids. That the shear stress is more 

effected than the heat transfer is due to the fact 
7 

1 __ . Gr,_ ./y(O) 
(10) that the direct effect of the buoyancy is an 

70 
&y’ ,f,“(()) -- . . 

additional force in the momentum balance. 

where 7” denotes the wall shear stress for forced 
convection in the absence of buoyancy and is 
given by 

~ ;zi Re:;' -- 21,” (0). (lOa) 

The departure of T/T” from unity is a measure 
of the buoyancy effect. Whether T/T” 1:. I or 
.=L 1 depends upon the relative size of T,,. and TX 
in exactly the same way as discussed above for 
the heat transfer. 

By inspection of equations (9) and (lo), it is 
seen that the magnitude of the buoyancy effect 
depends on G,;,/ReyL and on the ratios 
&(0)/8:(O) (heat transfer) andf,“(O)/f,“(O) (shear 
stress). Taking cognizance of the definitions of 
the Reynolds and Grashof numbers, equation 
(7b). it follows that buoyancy effects will be most 
important for low velocity flows with large tem- 
perature differences between the surface and the 
free stream. Additionally, since Grv,‘Re:“’ Y .Y’ 2. 
it follows that buoyancy effects will grow in 
importance with increasing distance from the 
leading edge. 

The ratios 8;(0)/(?:,(0) and f,“(O)/,l;“(O), which 
are listed in Table 1. hold the key to the magni- 
tude of the buoyancy effect. Inspection of the 
table in conjunction with equations (9) and (IO) 
revcals that the skin friction is more strongly 
effected by buoyancy than is the heat transfer. 
It is also seen that the buoyancy effects on both 
heat transfer and skin friction are strong 
functions of Prandtl number. with the buoyancy 
growing more important as the Prandtl number 
decreases. For the skin friction. the buoyancy 
effect is forty-fold as strong for a Prandtl 
number of 0.01 as for a Prandtl number of IO. 
For the heat transfer. the corresponding in- 
crease in buoyancy strength is eighteen-fold. 
The Prandtl number effect is thus somewhat 
more strongly in evidence for the skin friction 
than for the heat transfer. 

To illustrate the results. suppose that WC: 
consider a case when Re, 10J and Gr, 10’ 
for flow over a plate where T,,. ;. TX. Then. for 
Pr 7 0.7. q/q0 1.012 and ?/To I .052 : while 
for Pr = 0.01. q/q,, I .059 and 7; T,, 1.46. 
Thus. the large influence of Prandtl number is 
clearly demonstrated. 

One of the important utilities of the analysis 
is to establish quantitative conditions under 
which the buoyancy effects are large enough to 
merit consideration. Suppose that a 5 per cent 
change in local heat transfer or local shear due 
to buoyancy is taken as the threshold of signi- 
ficant effects. Then. for the local heat transfer. 
it follows from equation (9) that Eignificant 
buoyancy effects are found when 

Gr, .. 0.05 [0~(0)/0~(0)] Re, ’ (1 la) 

while. for the local shear. the corresponding 
criterion is 

Gr,. Y< 0.05 [f,,"(O): /i"(O)] Ret ( I1 b) 

These relations have been respectively plotted 
on logarithmic co-ordinates on Figs. I and 2. 
To illuminate the presentation, consider the 
Pr -: 0.01 curve on Fig. 1. This curve divides 
the Gr.-Ke plane into two parts. Gr-Re com- 
binations which fall above the curve lie in the 
region of significant buoyancy effects: while 
Gr-Re combinations which fall below the curve 
lie in the region of negligible buoyancy effects. 
Each of the curves serves a similar function foi 
each Prandtl number. For low Reynolds 
numbers. significant buoyancy effects occur 
with moderate Grashof numbers. while for high 
Reynolds numbers. large Grashof numbers are 
required. The greater sensitivity of low-Prandtl- 
number fluids to buoyancy is clearly demon- 
strated. 

Thus far. discussion has been centered about 
the local heat transfer and shear stress. We may 
also consider the total heat flux and total drag 
as defined by 
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FIG. 1. Gr~hof-Refolds relation for 5 per cent 
buoyancy effect on local heat transfer. 
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FIG. 2. Grashof-Reynolds relation for 5 per cent 
buoyancy effect on local shear stress. 
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P = fiqdx, D = J;rdx (12) 

For these, the buoyancy effects may be repre- 
sented as Q/Q0 and D/D,. The resulting expres- 
sions are respectively identical to equations (9) 
and (lo), except for a factor of 0.5 multiplying 
the second term of the series. Thus, the over-all 
quantities Q and D are less sensitive to buoyancy 
than are the local quantities q and T. 

VELOCITY AND TEMPERATURE 
PROFILES 

The velocity distribution may be expressed 
in terms of the variables of the analysis by 
writing that u = &/jay and then introducing 
equations (7) and (8). Thus, 

u/U, = ,,‘(T) + [Gr ~/Rez~2]f,‘(~) + .f .I L . ..(13) 

where .fO’(q) is the well-known Blasius function 
for forced convection which is independent of 
Prandtl number. The plus sign applies to flow 
above the plate with T, > T, and to flow below 
the plate with T, < Too. The minus sign applies 
in the opposite situations. The functions fO’ and 
fi’ are plotted on Fig. 3, where it is to be noted 
that the fi’ curve for Pr = 0.01 has its own 
scale on the right-hand ordinate. The velocity 
profiles are obtained by addition or subtraction 
after the ,fi’($ curve has been multiplied by 
Gr,/Rez12. Inspection of the figure reveals that 

the velocity profile in low-Prandtl-number 
fluids is much more effected by buoyancy than 
in high-Prandtl-number fluids. For those condi- 
tions where the contributions offi’ are additive, 
the effects of buoyancy can cause u/U, to exceed 
unity in some parts of the boundary layer. 

The boundary-layer temperature profile is 
expressed in terms of the variables of the analysis 
by equation (8b). The plus and minus signs 
correspond to the same conditions as were 
discussed with relation to equation (13). Curves 
representing the B,(y) and e,(7) functions for 
the various Prandtl numbers have been plotted 
and are presented in Fig. 4. The temperature 
distributions may be obtained by addition (or 
subtraction) of the B,, and 0r curves, after the 
latter has been multiplied by Gr,/ReSj”. Physical 
reasoning suggests that 0 < B < 1, and this 
highlights the fact that only moderate values of 
Gr,/Re~~’ may be used to be consistent with 
the truncation of the series. 
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Resume--L’auteur determine les conditions dans lesquelles la convection naturelle a des effets notables 
sur l’ecoulement de la couche limite sur une plaque plane, en convection for&e. I1 montre que les 

fluides a bas nombre de Prandtl sont plus sensibles aux effets de la convection naturelle. 

Zusammenfassung-Der Einfluss des Auftriebs auf eine Grenzschichtstromung llngs einer ebenen 
Platte bei Zwangskonvektion wurde untersucht. Fliissigkeiten mit kleiner Prandtl-Zahl sind gegen 

Auftriebseinfltisse besonders empfindlich. 

.~HHOTa4Hsr-OnpeAeneHbI ;vCJIOBIIH, B KOTOPbIX IIOAl&MHaR CmIB HtH~KOCTEl OKa3bIBaeT 

3HaWtTWIbHOe BJIIIHHIte Ha BbIHjWReHHSKl KOHBeIiIJHIO B IIOrpaHMYHOM CJlOe IIpOAOJIbHO 

OciTt?KWMOti IIJIOCKOB IIJlaCTIIHbI. Hanneuo, YTO ircHflKOCTH C MaJIbIM WICJIOM npaHgTJIH 

RBJIRIOTCR HaH607fW 9;VBCTBIITWIbHbIYII Ii 3@@KTaM IIOHl&MHOtt CIWIbI. 


